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OPTIMUM AND SUB-OPTTMUM TECHNIQUES FOR EXTRACTION 

OF INPUT SIGNALS FROM THE OUTPUTS OF NOISY 

TIME-VARIABLE MULTIPATH CHANNELS 

By 

F. Bryn 

ABSTRACT 

In underwater communication and echo-ranging the transmitted 

signal will generally reach the receiver via several distinct 

paths.  The resultant signal is referred to as a multipath signal 

The first part of this report derives the integral equation that 

defines the optimum filter for extracting the transmitted signal 

from a noise-corrupted multipath signal.  The solution of this 

equation is not considered to be easily accessible.  The second 

part of the report describes a practical technique for deriving 

near-optimum extraction filters applicable to echo-ranging 

situations involving reflections from a smooth ocean surface. 



INTRODUCTION 

Consider the randomly time-varying multipath transmission channel 

depicted in Fig. 1.  A transmitted signal  s(t)  gives rise to a 

s(t) 
—>— 

!  i 

N 

y(t) 

n(t) 

FIG.   1     NOISE-CORRUPTED MULTIPATH CHANNEL 

noise-corrupted  multipath   signal 

N «• 
y(t)   = S h   (T,t)   s(t-T)   dT +  n 

i=l     J~ 
(t) (Eq.    1) 

in which h.(T,t)  is the response of the  i'th channel, at time t, 

to a unit impulse applied  T  seconds earlier. 

The present report investigates the problem of defining the optimum 

linear filter for extracting the transmitted signal  s(t)  from the 



received waveform y(t).  It was considered to be of particular 

interest to study extraction techniques applicable to multipath 

explosive echo-ranging situations in which it is desirable to 

isolate the response of the target to the explosive pulse. 

The similarity between this problem and the pure transmission 

problem presented above is best understood by considering Fig. 2a 

6(t) y(t) 

n(t) 

FIG. 2a EQUIVALENT DIAGRAM FOR MULTIPATH ECHO-RANGING 

An explosive type pulse, in the figure denoted by  6(t), is 

transmitted from a point in the ocean at time  t = 0.  The pulse 

travels via one direct path (D) and one surface-reflected path (S) 

to the target represented by the two filters  F   and  F .  The 

output signals from the filters, being the responses of the target 

to the two incoming pulses, are reflected towards the receiver, 

each via one direct and one surface-reflected path.  If the impulse 

responses of the filters are denoted by  Sj(t)  and  sa(t) 

respectively, Fig. 2a can be redrawn as shown in Fig. 2b.  Finally, 
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n(t) 

FIG.   2b    EQUIVALENT DIAGRAM FOR MULTIPATH ECHO-RANGING 

if     sx(t)   =   s8(t)   =   s(t)      the   diagram becomes   as   shown   in  Fig.   2c 

This   is   similar  to  Fig.    1   with     N =   4. 

D-D 

D-S 

S-D 

S-S 

y(t) 

n(t) 

FIG. 2c FINAL EQUIVALENT DIAGRAM 

The results obtained are twofold.  Firstly, the integral equation 

governing the form of the optimum linear extraction filter for the 

noise-corrupted, randomly time-varying, multipath channel is 

derived; the solution of this equation is not believed to be easily 

accessible.  Secondly, a practical, intuitive technique for 



deriving near-optimum extraction filters for multipath, noise- 

corrupted, echo-ranging situations involving reflections from a 

smooth surface, is considered.  The time-varying element is 

here eliminated and only the noise retained. 



1.   THE IMPULSE RESPONSE OF THE CHANNEL 

From Eq„ 1 the time-varying impulse response of the channel is 

N 
h(T,t)  = £  h±(T,t) , (Eq. 2) 

i=l 

where  h.(T> t) defines the response of the  i'th channel, at 

time  t, to a unit impulse applied  T  seconds earlier.  In 

physical systems we always have 

h. (T, t) =0  for  T < 0 

The Fourier transform of  h(T,t)  with respect to  T  is the 

time-varying frequency response  H(f, t)  of the channel.  Thus 

P" 
H(f,t)  =  J  h(T, t)  e-

j2TTfT   dT 
0 

(Eq. 3) 

h(T, t)  =      H(f, t)  e^2^1  df . 

In what follows we shall assume that  h(T,t)  and H(f, t)  are 

random functions of time  t  and that they are members of stationary 

processes  h(t,t)   and   H(f, t)    respectively. 



2.   THE OPTIMUM EXTRACTION FILTER 

Referring to Eq. 1, the problem considered is as follows: 

Given a mixture 

y(t)  =  m(t) + n(t) (Eq. 4) 

of a multipath signal 

N   p. 
m(t)  = Z     h±(T, t) • s(t-T) dT 

i=l "0 
(Eq. 5) 

and stationary noise  n(t), what is the optimum, physically-realizable, 

linear filter for estimating s(t - t0)  from y(t)?  The delay  t0 

may be arbitrarily selected by the filter designer. 

It is assumed that the transmitted signal  s(t)  has finite 

length  T  and that we only are interested in the filter estimator 

output in the interval from  t0 to  (t0 + T). 

Let  g(T)  be the impulse response of the filter estimator and 

Z(t)  its output, as shown in Fig. 3.  Mathematically our problem 

y(t)=m(t)+n(t) 
g(T) 

Actual output = z(t) 

Desired output = s(t - t ) 

FIG. 3 



is identical to that of determining  g(f)  such that the 

mean square error: 

t0+T 

=  E       [z(t) - s(t-t0)l  dt (Eq. 6) 
g 

t o 

is a minimum.  Note that 

P" 
z(t) -     g(r) • y(t - T) dT 

The minimization may be done by variational techniques, i.e. 

one introduces a new filter estimator with impulse response 

k(r) = g(r) + e • TI(T) 

and requires that the derivative of the corresponding mean square 

error with respect to  e  be zero for  e = 0 for all functions   T|(T) 

It is assumed that the properties of    TI(T)  are those of a 

physically realizable filter response. 

The minimization process is shown formally in Appendix A.  The 

result is the integral equation: 

p" 
l  g(T) [Vm(T'v) +T* Vn(T-v)] ' d'-V.(t"v) = °    :LjL2 

(Eq. 7) 



where 
i 

P 
tc+T 

m m(T,v)   = E   (m(t-T)   •    m(t-v))      dt 

t. 

cpn n(T-v)   =     E   (n(t-T)   •   n(t-v))    , 

tc+T 

cpm>s(t0,v)   - s(t-t„)   •    E(m(t-v))  dt 

o 

The function m(t) is given by Eq. 5. Figures 4a, b, c, and d 

present some simplified illustrations of the signals involved in 

Eq. 7. 

If  t0  is chosen sufficiently large, all terms on the lefthand 

side of Eq. 7 will approach zero for v<0.  It is then possible 

to apply a Fourier transform with respect to the variable  v. 

Introducing 

0(f)     =       f"  g(T)   e-j2TTfT     dT   , 

N(£)     = «pnn(v)     e dv 

(f,5)   -     f+"     f+"   » (T,v)    eJ2TT(f-T-^v)    ^   .    ^      9 
m.m J J 

and 

f».8(t-'°   =   J »m.s(t-v)   6 dV 
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FIG. 4a  TRANSMITTED SIGNAL s(t) AND MULTIPATH OUTPUT m(t) 

*<,"*! 

t.-*t 

0  3 

^-s 

*.-*4 
fco-t3  

t.-t2   *•"*» 

mm 

•»• T 
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FIG. 4c  THE CORRELATION FUNCTION Cp  (T- v) 
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FIG. 4d  THE CORRELATION FUNCTIONcp  (t„,v) m,s 

11 



Eq. 7 may be transformed to yield 

G(f) • t   (f,5) df + T • GU) • N(0  =  $   (t0,0 m.m m.s  ° 

Introducing finally 

mm mm 

and 

F JtotZ)     -  •   (t0,^)/T.N(C) , m.s" ° 

one obtains 

G(f)«F   (f,Odf+ G(0 - P   (t.,C) . (Eq. 8) .1 m.m m.s 

This will be recognized as an inhomogeneous integral equation 

of the second kind. 

12 



3.   A PRACTICAL EXTRACTION TECHNIQUE 

The theoretical treatment of the extraction problem presented 

in Ch. 2 can hardly be considered very practical for echo-ranging 

situations, because the signal and path information required for 

the functions  F   (f, £,)  and  F   (t„, £) of Eq. 8 will rarely be 
m.m m. s  ° 

available.  In this chapter we shall attempt to solve the extraction 

problem for an echo-ranging situation involving time-invariant 

transmission paths by means of a more practical intuitive approach. 

The situation to be considered is similar to the one depicted in Fig. 

2c.  It is assumed that the paths are time-invariant, and that, 

except for the path delays which may be different, they have 

identical and ideal transmission characteristics.  Such conditions 

may be encountered when the ocean surface is very calm.  Furthermore, 

it is assumed that the points of transmission and reception are 

the same.  Paths D-S  and  S-D  will thus coincide and the impulse 

response of the path combination between points a and b in Fig. 2c 

is as shown in Fig. 5a.  The absolute value of the Fourier 

transform  H(f)  of this impulse response is as shown in Fig. 5b. 

It is easily shown that 

-j2nfta 
H(f) = -2( 1 - cos 2TT -f-At) • e        , (Eq. 9a) 

where  At  is the separation between successive paths and  ta  is 

the delay associated with the  D-S/S-D  paths.  Note that the 

13 
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FIG. 5a IMPULSE RESPONSE OF MULTIPATH CHANNEL 

|H(f) 

1/At 

FIG. 5b FREQUENCY TRANSFER FUNCTION OF MULTIPATH CHANNEL 
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pattern of Fig. 5a is symmetric about the  D-S/S-D  paths and that 

the responses due to these are inverted due to one surface 

reflection.  The time delay expressed by the term  -e      a in 

H(f)  will be ignored, since this is of no importance for what 

follows.  Thus we shall write 

H(f)  =  2( 1 - cos 2nf-At) (Eq. 9b) 

The idea behind the extraction technique will be described by 

reference to Fig. 6a.  A signal  s(t)  equal to the impulse 

response of the target is the input to a linear filter with impulse 

response equal to the multipath structure shown in Fig. 5a.  Gaussian 

noise  n(t)  is added  to the multipath signal and the mixture 

fed to the inverse filter, the structure of which is to be 

determined.  The output of this filter can be considered to be the 

sum of three components.  The first is a desired signal  k°s(t). 

The second is undesired signal components  s (t).  The third 
m 

is the output  n0(t)  due to the noise  n(t).  The three 

components are indicated in Fig. 6b.  The design criterion for the 

inverse filter is that it should maximize the ratio between the 

energy of the desired signal and the energy, in the same interval, 

of the undesired signal components and noise.  Thus one wants to 

maximize the ratio 
t0+T 

ka r  sa(t) dt 

r = t +T 

E (j   [8m(t)+n.(t)]  dt) 

15 
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FIG.   Sa    EQUIVALENT DIAGRAM OF MULTIPATH/INVERSE-FILTER COMBINATION 
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where the statistical averaging indicated by  E (      )  applies to 

the noise  n0(t).  Since the noise will be statistically 

independent of  s (t)  and will be assumed to have zero mean 
m 

value, one can write 

ka . P 

r  -   £3 S   , (Eq. 10) 

i 4 sam(t) dt + E(n°(t)) 

where 
t.+T 

P_ -  ^  j    sa(t) dt . s 

to 

We shall first consider the frequency function H.(t) of the 

ideal inverse filter when   n(t) = 0, that is for the noiseless 

situation.  The form of this filter is 

H±(f)  =  1/H(t) , 

with     H(f)      given by   Eq.   9   as 

H(f)   =   2( 1 - cos   2nf -At)    . 

Thus 

H.(f)   =   1/2(1-   cos2TTf«At)    . 

17 



The functions  H(f)  and  H.(f)  are shown in Fig. 7.  The product 

of the two is of course equal to unity for all f  and is the desired 

total response yielding an output equal to  s(t). 

H(f) 

0        f=l/At 

FIG. 7 THE IDEAL INVERSE FILTER n(t) - 0 

Consider next the more practical situation with  n(t) ^ 0.  We 

shall assume that  n(t)  has uniform power spectral density. 

Referring to Fig. 7 it will be apparent that the inverse filter, 

with its large amplitudes at frequencies that are multiples of 

l/At, will introduce noise of very high intensity at the output. 

It is therefore necessary to modify the inverse filter in a 

direction that will tend to maximize the ratio  r  of Eq. 10. 

IS 



Figure 8 illustrates one possible modification.  It is seen that 

H.(f)  is periodic with period  l/At. 

*-f 
l/At 

FIG,   e    MODIFIED  INVERSE FILTER FUNCTION 

For     f <  l/2At     we  have 

H.(f)      - 
1 

1/2   ( 1 - cos 2nf .At)      for    -<   | f |<    l/2 At 

0     for |f| 
<! 

(Eq.    11) 
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The problem is now to determine  b  such that the ratio  r  of 

Eq. 10 is maximum.  It should be noted that this is only one 

possible form of the inverse filter.  Other modifications involving 

functions with less abrupt changes may be more useful. 

Figure 8 also shows the total frequency response  H(f)*H.(f),  This 

may be decomposed into the two components shown in Fig. 9. 

0 

I 
i 

*H   (f) 
m JL 

i 

I 

I 
I 

-*•   f 
1/At 

Thus 

FIG.   9    DECOMPOSITION OF H(f)»H  (f) 

H(f)« H.(f)       =      1 -H   (f)    . 
l m 

(Eq.    12) 

For practical purposes it is necessary to impose bandwidth 

limitations on the inverse filter or the receiving circuits 

preceding it.  We shall assume that the signal  s(t)  contains no 

20 



frequency components at frequencies greater than  f = B, where 

B >> 1/At , 

and that the receiving circuit preceding the inverse filter has 

the characteristics of an ideal lowpass filter of bandwidth  B. 

If the input noise power in this frequency band is  P   it is easily 

shown with the aid of Appendix B that the signal-to-noise ratio  r 

of Eq. 10  becomes 

Ps -(1-aJ
8 

  (Eq. 13) 
»  • P 
£  £  C. .-a. -a. + -^   (tan-; ( 1-b -At) +7 tan J (l-b-At)l 

i=1  .    ij  1  J   8r L  2 3    2 J 

where 
t0+T 

_ 1      P Ps - -  j  s»(t) dt 

t. 

t +T O 

Ci-=T   [s(t-t0-i-At)+s(t-t0+i.At)][s(t-t0-j-At) +s(t-t0+j.At)"j J 
t 

and 

•»  1 
aB,   a.      are the zero'th and  i'th coefficient respectively in the 

Fourier Series expansion of  H (f).  (See Appendix B.) 
m 

They depend on  b. 

21 



The signal-to-noise ratio as given by Eq. 13  must be maximized 

with respect to  b.  This process can generally be greatly 

simplified when one further assumption can be made.  Thus if 

( 1     for 1 = J 

C±  -   ( (Eq. 14) 

( 0    for    i +  j 
( 

we can write 

Z  £  C. .. a.«a .  =  P  T,       a? 
i-1 j-1  1J   X 3 S i-1   X 

According to Appendix B 

a0 = b'At 

and 

T.    a .a - b . At ( 1 - b • At) 

i=l 

Therefore 

P 
s a 

— (1 - b.At) 
N 

r =    (Eq. 15) 

P 1 
•b'At( l-b.At)+ g—• [tan J( 1-b- At )+~tan3 J (l -b^At)] s 

P 
N 

22 



Equation 15 can be differentiated with respect to  b  in order to 

determine the value  b = b0  yielding the maximum value of  r. 

The value of b„  will clearly depend on the ratio  P /P„, as 
s  N 

will also  r 
max 

In order that the assumption contained in Eq. 14 shall be valid 

it is necessary for the signal bandwidth  B  to be much greater 
s 

than  l/At  and for the signal length  T  to be much greater 

than  l/b0.  The condition  T >> l/bo  ensures that the major part 

of the components of s (t)  of Figs. 5 and 6 will fall within the 
m 

time-interval   t0,(t0 + T) I.  C.„  will then involve auto-correlation 

functions of  s(t)  with arguments  (i ±j) At.  Since the minimum 

value of  (i±j)«At,  i ^j , is  At, the condition B >> l/At 
s 

implies that these auto-correlation functions are zero except when 

i = J . 

23 



4.  COMMENTS 

An extraction technique following the very general theoretical 

prescriptions of Ch. 2 is not considered very practical due to the 

amount of a priori knowledge required about channel and signal 

(target)  statistics and also due to difficulties in solving the 

integral equation involved. 

The less general technique outlined in Ch. 3 appears to be 

of greater practical value.  However, further studies are required 

before the true value of this approach can be properly assessed. 

These studies should relate to the accuracies with which the 

quantities  P /PVT  and  At  of Eqs. 13 or 15 can be estimated and 
s  N 

to the influence of estimation errors on the mean square error 

of the extracted signal. 

24 



APPENDIX A 

THE MINIMIZATION PROCESS 

It is desired to find the physically-realizable filter impulse 

response  g(t)  that minimizes the expression 

t0+T 

*ig - E (J g(T).y(t-T) dT-s(t-t0)]  dt) Eq. A.l 

Inserting 

k(r) = g(r) + e-rid) Eq. A.2 

for   g(T)  one obtains 

t„+T 
°        00   00 

Hk - E( I k(<r)-k(v)-y(t-T)-y(t-v) dvdT-dt 

4- O     O 

t0+T m to+T 

-2      s(t-t0) '    k(T).y(t-T) dT-dt +    s8(t-tc) dt) 

*^o o t o 

Eq.A.3 

25 



After substitution for h(r)  from Eq.(A.2) it is desired to 

evaluate the differential  d u /de  at  e = 0. 

ee t +T 

(1*7)     = 2  f ^[J g(T)* J    ' E(y(t-T),y(t-v)) dt'dT 
C=0     »-'•     ^w°        vt0 

t +T o 

j  s(t-t0)-E(y(t-v))dt] dv 

fco 

It is required that this be zero for all r|(v) .  This is obtained 

when the quantity inside the square parenthesis is zero.  Thus 

tc+T 

j  g(T)'       E ( -y(t-T)-y(t-v)) dt  dT 

t +T O 

j   s(t-tc)*E (y(t-v)) dt  - 0 Eq.A.4 

for  v > 0 

Since  y(t)   is the sum of a multipath signal  m(t)  and 

stationary noise  n(t) , we can introduce the functions 

t0+T 

Cp   (T,v) -      E (m(t-T)-m(t-v)) dt 
^m.m J     \ / 

to 

26 



CPn n(T-v)  =  E (n(t-T)'n(t-v)) 

tc+T 

CPm>s(t0,v)  -      s(t-t0)° E (m(t-v)) dt 

t« 

into Eq.(A.4).  The result is 

Jc      Lm.m n„n     J       m.s" 

for  v > 0 

27 



APPENDIX B 

THE OUTPUT SIGNAL-TO-NOISE RATIO 

The total respon.se of the channel-filter combination was given by 

Eq. 12 of Ch. 3 as 

H(f)-H.(f)  =  1 -H (f) Eq. B.l 
l m 

We shall study this response function in the time domain and 

separate it into two components, one giving rise to the desired 

signal and the other to undesired signal components  s (t). 
m 

Consider first the function  H (f)  depicted in Fig. B. 1. It is 
m 

periodic, with period  l/At,  and can be expressed by the Fourier 

series 

H_.(f) - aa+2 £  a. -cos 2TT.i'At f Eq . B.2 
i=l 

m-      °  .     l 

It   can be   readily   shown  that 

1/2 At 

P 
J 

-1/2-At 

a„   =   At H   (f)     df     =     b-At Eq. B.3 J m 

and  that 

l/2At 

n 2 
At |H   (f) I     df     =     a0

3 +   2     Z)       a? 
J '   m ' ° i-i        x 

-1/2-At 

28 



The latter yields 

b-At =  a0
a + 2 £ 

i=l 

or 

2 £ a.a 
l 

i=l 
=  b • At • ( 1 - b • At) Eq„ B.4 

We return now to Eq. B.l.  Inserting for  H (f) from  Eq. B.2 

gives 

H(f)-H.(f) - (l-ae) -2 £  a. cos 2TT «i • At «f  . 
i=l 

Performing a Fourier transform, we obtain the impulse response 

h, (t)  of the channel-filter combination.  This function is 

illustrated in Fig. B.l and is 

mm 

h (t) = (l-a0)fi(t) - £ a. r6(t-i.At)+6(t+i-At)l        Ec  B.5 
i=l 

Here the term  (1 - a0) 6(t) carries the desired signal component 

The remaining terms carry undesired signals  s (t). 
m 

1 U-ao) 

r ~ i - -. 

At 

h-H 
?oxi-p -t— • --T T-^ -*- t 

  a 
_2  a 

-1 
a _ _ _ 

1   z 

FIG. B.1  THE IMPULSE RESPONSE h (t) 
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In the derivation of  Eq. B.5 > time-delays in the channel and 

filter response functions have purposely been omitted on the 

grounds that they do not affect the magnitudes of the quantities 

considered in Eq. 10.  A real situation involves a channel delay, 

which in Eq. 9a  is denoted by  t3, and a filter delay  t_  which 

is necessary if the inverse filter is to be physically realizable, 

The delay  t   must be approximately half the extension of the 

Fourier transform of  H.(f)  in the time domain.  Writing 

t0  
=  fca + tf   i 

Eq. B.5   should be written 

h (t)=(l-a0)fl(t-t0)- E a.rS(t-t0-i-At)+6(t-to+i-At)l      Eq.B.6 
ZJ 1=1 

If we apply a signal  s(t)  to the channel input at time  t = 0, 

the filter output signal becomes 

u(t) =  (l-a0)  s(t-t0) + sm(t) , 

where 

s (t) = - £ a.rs(t-tc-i-At) +s(t-t0+i.At)l 
i-1  lL J 

30 



We are now able to extract the quantities required for  Eq. 10. 

Thus 

k8  -  (1-aJ3 Eq.B.7 

te+T 

•J       sa(t) dt = r  Z  c. .-a.-a. , 
T  J    m        i-1 j-1  1J  X  J fc

o 

where 

t0+T 

Ci-= T     [s(t-t0-i-At)+s(t-t0+i.At)][s(t-t0-j-At)+s(t-t0+j.At)] dt 

(B.8) 

The final information needed for Eq. 10 is the evaluation of the 

noise term  E ( na
a(t) J .  We can write this as 

P..  «B 
E(no3(t))= f     I  lHi(f)!a df . 

Since     H.(f)   is  periodic,   with period     l/At     and     B>>l/At,   we  can 

write 

l/2»At 

E(n0
a(t))=   2-   ~f   •   B-At      j |H±(f)|

a   df   . 

31 



Inserting    H   (f)     =     1/2   ( 1 - cos 2TT «f • At) 
1 

and performing the integration, yields 

E^nc
a(t))= ~^ [tan^(l-b.At) + - tan3 £( 1 _ b- At) ] .        Eq.B.9 
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